X chromosomes and autosomes evolve at similar rates in Drosophila: no evidence for faster-X protein evolution.
نویسندگان
چکیده
Recent data from Drosophila suggest that a substantial fraction of amino acid substitutions observed between species are beneficial. If these beneficial mutations are on average partially recessive, then the rate of protein evolution is predicted to be faster for X-linked genes compared to autosomal genes (the "faster-X" hypothesis). We test this prediction by comparing rates of protein substitutions between orthologous genes, taking advantage of variations in chromosome fusions within the genus Drosophila. In members of the Drosophila melanogaster species group, the chromosomal arm 3L segregates as an ordinary autosome (i.e., two homologous copies in both males and females). However, in the Drosophila pseudoobscura species group, this chromosomal arm has become fused to the ancestral X chromosome and is hemizygous in males. The faster-X hypothesis predicts that protein evolution should be faster for genes on this chromosomal arm in the D. pseudoobscura lineage, relative to the D. melanogaster lineage. Here we combine new sequence data for 202 gene fragments in Drosophila miranda (in the pseudoobscura species group) with the completed genomes of D. melanogaster, D. pseudoobscura, and Drosophila yakuba to show that there are no detectable differences in rates of amino acid evolution for orthologous X-linked and autosomal genes. Our results imply that the contribution of the faster-X (if any) to the large-X effect on reproductive isolation in Drosophila is not due to a generally faster rate of protein evolution. The lack of a detectable faster-X effect in these species suggests either that beneficial amino acids are not partially recessive on average, or that adaptive evolution does not often use newly arising amino acid mutations.
منابع مشابه
Parallel Faster-X Evolution of Gene Expression and Protein Sequences in Drosophila: Beyond Differences in Expression Properties and Protein Interactions
Population genetics models predict that the X (or Z) chromosome will evolve at faster rates than the autosomes in XY (or ZW) systems. Studies of molecular evolution using large datasets in multiple species have provided evidence supporting this faster-X effect in protein-coding sequences and, more recently, in transcriptomes. However, X-linked and autosomal genes differ significantly in importa...
متن کاملX chromosome evolution in Drosophila
Although the X chromosome is usually similar to the autosomes in size, gene density and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gen...
متن کاملSex-Biased Transcriptome Evolution in Drosophila
Sex-biased genes are thought to drive phenotypic differences between males and females. The recent availability of high-throughput gene expression data for many related species has led to a burst of investigations into the genomic and evolutionary properties of sex-biased genes. In Drosophila, a number of studies have found that X chromosomes are deficient in male-biased genes (demasculinized) ...
متن کاملSex-linked mammalian sperm proteins evolve faster than autosomal ones.
X-linked genes can evolve slower or faster depending on whether most recessive, or at least partially recessive alleles are deleterious or beneficial due to their hemizygous expression in males. Molecular studies of X chromosome divergence have provided conflicting evidence for both a higher and lower rate of nucleotide substitution at both synonymous and nonsynonymous sites, depending on the n...
متن کاملX-linked genes evolve higher codon bias in Drosophila and Caenorhabditis.
Comparing patterns of molecular evolution between autosomes and sex chromosomes (such as X and W chromosomes) can provide insight into the forces underlying genome evolution. Here we investigate patterns of codon bias evolution on the X chromosome and autosomes in Drosophila and Caenorhabditis. We demonstrate that X-linked genes have significantly higher codon bias compared to autosomal genes i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2006